
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SubGraph2Vec: Highly-Vectorized Tree-like Subgraph Counting
Anonymous Author(s)

ABSTRACT

Subgraph counting aims to count occurrences of a template T in a
given network G(V,E). It is a powerful graph analysis tool and has
found real-world applications in diverse domains. Scaling subgraph
counting problems is known to be memory bounded and compu-
tationally challenging with an exponential complexity. Although
scalable parallel algorithms are known for several graph problems
such as Triangle Counting and PageRank, this is not common for
counting complex subgraphs. Here we address this challenge and
study connected acyclic graphs, or trees. We propose a novel vec-
torized subgraph counting algorithm, named SubGraph2Vec, as
well as both shared memory and distributed implementations: 1)
reducing algorithmic complexity by minimizing neighbor traver-
sal; 2) achieving a highly-vectorized implementation upon linear
algebra kernels to significantly improve performance and hardware
utilization. SubGraph2Vec improves the overall performance over
the state-of-the-art work by orders of magnitude and up to 660x
on a single node. 4) SubGraph2Vec in distributed mode can scale
up the template size to 20 and maintain a good strong scalability. 5)
enabling portability to both CPU and GPU.

KEYWORDS

Subgraph Counting, Vectorization, Portability

ACM Reference Format:

Anonymous Author(s). 2019. SubGraph2Vec: Highly-Vectorized Tree-like
Subgraph Counting. In Proceedings of International Conference on High

Performance Computing, Networking, Storage and Analysis (SC’19). ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Counting subgraphs from a large network is fundamental in graphs
problems. It has been used in real world applications across a range
of disciplines, such as in bioinformatics [5], social networks analy-
sis, neuroscience [13] Online social network has billion- or trillion-
sized network, where certain group of users may share specific
interests[42]. Studying these groups improves the searching algo-
rithm and [22] enables an estimate of graphlet (size up to 5) counts in
social networks with 50 million of vertices and 200 million of edges.
In bioinformatics, the frequency or distribution of the occurrence of
each different testing templates may characterize a protein-protein
interaction network [5][37], where repeated subgraphs are crucial
in understanding cell physiology as well as developing new drugs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC’19, November 17-22, 2019, Denver, Colorado

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Counting the exact number of subgraphs of size k in a n-vertex
network takesO(k2nk) time, which is computationally challenging
even for moderate values of n and k . In fact, determining whether
a graphG contains a subgraph to H is a related graph isomorphic
problem that is NP-complete [23]. Arvind et al.[9] provides an ap-
proximate algorithm, called color coding to estimate the exact count
with statistical guarantees bounded treewidth graphs. Although
the color-coding algorithm in [5] has a time complexity linear in
network size, it is exponential to subgraph size. Therefore, effi-
cient parallel implementations are the only viable way to count
subgraphs from large-scale networks. To the best of our knowledge,
a multi-threaded implementation named Fascia [37] is considered
to be the state-of-the-art work in this area. Still, it takes Fascia
more than 4 days (105 hours) to count a 17-vertex subgraph from
the RMAT-1M network (1M vertices, 200M edges) on a 48-core
Intel (R) Skylake processor. While our proposed algorithm named
SubGraph2Vec takes only 9.5 minutes to complete the same task
on the same hardware.

The primary contributions of this paper are as follows:

• Algorithmic Design. We identify and reduce the compu-
tation complexity of the sequential color-coding algorithm,
which also helps reduce communication overhead in dis-
tributed systems.
• Systemdesign andoptimization.Wedesign the data struc-
ture as well as the execution order to maximize the hardware
efficiency in terms of vector register and memory bandwidth
usage. The new design replaces the vertex-programming
model by using linear algebra kernels.
• Performance evaluation and comparison to priorwork.

We characterize the performance compared to state-of-the-
art work Fascia, and our solution attains the full hardware
efficiency according to a roofline model analysis.

2 PRELIMINARIES

2.1 Motivation

Recent research has achieved substantial progress on counting the
occurrences of subgraphs such as triangles or 4-cycle subgraphs:
not only have very efficient algorithms been developed, but also a
theoretical explanation of graph models and their applications in
real-world use.

Comparing two graph networks via subgraph counting to mea-
sure topological features how similar any given pair of networks
could be.

Note that an induced subgraph of a graph G is a subset of the
vertices of the graph G as well as with any edges connecting pairs
of vertices in that subset. If G is a fully connect graph of size n,
then a circle goes through every vertex in G is not an induced
subgraph of G; it is a non-induced subgraph of G since there are
missing edges between vertex pairs. There are many more non-
induced subgraphs isomorphic to a given topology and thus it is

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SC’19, November 17-22, 2019, Denver, Colorado Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

more difficult to count non-induced subgraphs of a network. The
motivation of considering non-induced subgraph is

Counting non-induced subgraphs from a large network is fun-
damental in numerous applications such as the protein-protein
interaction network (PPIN), where repeated subgraphs (motifs) are
are crucial in understanding cell physiology as well as developing
new drugs. As PPINs usually include many false (positive and neg-
ative) and missing interactions[5], counting non-induced subgraph
is more suitable to get reliable and robust results [5].

Alon et al. [5, 7] provide a practical algorithm, named color
coding, to count trees and graphs of bounded treewidth (size less
than 10) from PPINs of unicellular and 41 multicellular organisms
by using the color-coding technique developed in [8]. Figure 1

10 20 30 40
10−5

10−3

10−1

Template ID

Fr
eq

ue
nc

y

Yeast1 Yeast2 Ecoli

(a) Combined-APMS and LC-multiple

10 20 30 40
10−5

10−3

10−1

Template ID

Fr
eq

ue
nc

y

Worm1 Worm2

(b) WI-2004 and WI-2007

Figure 1: A comparison of treelet distributions of five PPIN

networks by SubGraph2Vec

illustrates such a real-world application of PPIN, where we count
tree-like motifs with different sizes to estimate their frequencies
and observe that the distribution for the unicellular Ecoli and yeasts
are very close, while the more complex C. elegans (a kind of worm)
is quite different.

2.2 Statement of Problem

2.2.1 Subgraph Counting. Subgraph finding and counting is a
widely studied subject. A (non-induced) subgraph of a simple un-
weighted graph G(V ,E) is a graph H (VH ,EH) satisfying VH ⊂ V
and EH ⊂ E.H is an embedding of a template graphT ifT is isomor-
phic to H . The subgraph counting problem is to count the number
of all embeddings of a given template T in a network G. We use
emb(T ,G) to denote the number of all embeddings of templateT in
network G.

2.2.2 Color coding method and its precision. Color-coding [8] is an
algorithmic technique which is useful in the discovery of network
motifs. The basic idea of color-coding is: given a k-node template
T , we assign random colors between 0 and k − 1 to the vertices
of the network graph G, and count the number of occurrences of
the template that are colorful, meaning the vertices matched to
the template have distinct colors. Both theoretical proof [6, 8, 19]
and experiments [5, 39] show that with proper normalization, the
colorful count is an unbiased estimator of the actual count.

SubGraph2Vec is a vectorized implementation of the color cod-
ing technique. Alon et al. [8] proved that to guarantee a count
bound of (1 ± ϵ)emb(T ,G) with probability 1 − 2δ , we would need
to run at most N iterations, as defined in Algorithm 1.

Figure 2: Illustration of the template partitioning within a

colored input G = (V ,E)

2.3 Sequential Algorithm

Color coding [5] provides a fixed parameter tractable algorithm to
address the subgraph counting problem where T is a tree. It has a
time complexity of O(ckpoly(n)), which is exponential to template
size k but polynomial to vertex number n. Algorithm 1 describes the
standard sequential algorithm with definition and notation shown
in Table 1, which contains three important steps as follows.

Algorithm 1: Standard Sequential Algorithm

1 N = O(e
k log(1/δ)

ϵ 2) // required iterations to converge

2 Partition T into sub-templates Ts
3 for j = 1 to N do

4 color all Vi ∈ G(V ,E) randomly
5 counting Ts in a dynamic programming procedure
6 P ← probability that the template is colorful
7 α ← number of automorphisms of T0
8 f inalCount[j] ← 1

Pα
∑
i
∑
C M0(i, IC)

9 Output the average of all f inalCount .

2.3.1 Template Partitioning. For tree-like templates, we can re-
cursively partition T into a chain of sub-templates Ts until the
sub-template containing only one vertex (see Figure 2). When parti-
tioning a template T , a single vertex ρ is selected as the root while
Ts (ρ) refers to the s-th sub-template rooted at ρ. Secondly, one of
the edges (ρ,τ) adjacent to root ρ is cut, creating two child sub-
templates. The child holding ρ as its root is named active child and
denoted as Ts,a . The child rooted at τ of the cutting edge is named
passive child and denoted as Ts,p .

2.3.2 Random Coloring. Each vertex v ∈ G(V ,E) is given an inte-
ger value of color randomly selected between 0 and k − 1, where
k ≥ |VT | (we consider k = |VT | for simplicity). G(V ,E) is there-
fore converted to a labeled graph. We consider an embedding H
as "colorful" if each of its vertices has a distinct color value. In [8],

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SubGraph2Vec: Highly-Vectorized Tree-like Subgraph Counting SC’19, November 17-22, 2019, Denver, Colorado

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Alon proves that the probability ofH being colorful is k !
kk

, and color
coding approximates the exact number of H by using the count of
colorful H .

Algorithm 2: Dynamic Programming Procedure
input :G(V ,E),T
output :Ms

1 forall sub-templates Ts in reverse order of their partitioning do

2 if Ts consists of a single vertex then

3 forall Vi ∈ V do

4 Ms (i, color of Vi) ← 1

5 else

// Ts has an active child Ts,a and a passive

child Ts,p
6 forall vertices Vi ∈ V do

7 forall color sets Cs satisfying |C | = |Ts | do
8 forall color sets Cs,a and Cs,p created by

splitting Cs satisfying |Cs,a | = |Ts,a | and
|Cs,p | = |Ts,p | do

9 Ms (i, Is) ←
∑

Vj ∈N (Vi)
Ms,a (i, Is,a)Ms,p (j, Is,p)

2.3.3 Counting by Dynamic Programming. Algorithm 2 describes
the dynamic programming procedure to count partitioned template
T from the randomly colored G(V ,E). For bottom sub-template
|Ts | = 1,Ms (i, Is) is 1 only ifCs equals the color randomly assigned
to Vi , and otherwise it is 0. For non-bottom cases where |Ts | > 1,
we obtain Ms (i, Is) by multiplying the count values from its two
children, which have been calculated in previous steps of dynamic
programming.

Table 1: Definitions and Notations

Notation Definition
G(V ,E) or G The input network
AG |V | × |V | sparse adjacency matrix of G(V ,E)
N (Vi) or N (i) Neighbors of vertex Vi
T , Ts The input template and the s-th sub-template
|Ts | Number of vertices in Ts
Ts,a , Ts,p Active and passive child of Ts
n n = |V | is the number of vertices in G
k k = |VT | is the number of vertices in T
Cs Color set for Ts
Ms |V | ×

(k
|Ts |

)
dense matrix to store counts for Ts

Ms,a , Ms,p Dense matrix to store counts for Ts,a , Ts,p
B B = AGMs,p , the sum of the counts of all neighbors.
ICs or, Is Column index of color set Cs calculated by Equation 1

The index Is requires a bijection between the color sets and
integers. The combinatorial number system [36] is such a corre-
spondence between natural numbers and k-combinations. For a sub-
templateTs of sizehwithk possible colors, the color setCs would be

Cs = {c1, c2, . . . , ch } ⊂ {0, 1, . . . ,k − 1}, where c1 ≤ c2 ≤ · · · ≤ ch .
The corresponding index of Cs is

ICs =

(
c1
1

)
+

(
c2
2

)
+ . . .

(
ch
h

)
. (1)

3 RELATEDWORK

A tree subgraph enumeration algorithm by combining color coding
with a stream-based cover decomposition was developed in [48].
To process massive networks, [49] developed a distributed ver-
sion of color-coding based tree counting solution upon MapReduce
framework in Hadoop, [38] implemented a MPI-based solution,
and [47] [21] pushed the limit of subgraph counting to process
billion-edged networks and trees up to 15 vertices.

Beyond counting trees, a sampling and random-walk based tech-
nique has been applied to count graphlets, a small induced graph
with size up to 4 or 5, which include the work of [4] and [22]. Later,
[19] extends color coding to count any graph with a treewidth of 2
in a distributed system.

Color coding is a very general method and [8] showed that color
coding applies to any subgraph of tree, circle and bounded tree
width. [19] is a color coding implementation that can be applied to
all templates with a tree width of no more than 2.

Also, [34, 35] provides a pruning method on labeled networks
and graphlets to reduce the vertex number by orders of magnitude
prior to the actual counting.

Other subgraph topics include: 1) subgraph finding. As in [24],
paths and trees with size up to 18 could be detected by using multi-
linear detection; 2) Graphlet Frequency Distribution estimates rela-
tive frequency among all subgraphs with the same size [17] [31];
3) clustering networks by using the relative frequency of their sub-
graphs [33]. Subgraph Matching finds and enumerates all isomor-
phic subgraphs to a given template from input network. [40] con-
tributes an online algorithm to query subgraph templates from
billion-node network by using intelligent graph exploration to re-
place expensive join operations. [28] compares and summarizes
subgraph isomorphism algorithms in graph databases. Later on [15]
improves the performance of subgraph matching up to three orders
of magnitude by postponing the Cartesian products based on the
structure of a query to minimize the redundant Cartesian products.

Subgraph counting can also be used to define the similarity be-
tween graphs. The graphlet frequency distance (GFD) was proposed
by Przulj et. al[32] as a global comparative measure based on the
local structural characteristics of different networks. Bordino et
al. [16] demonstrates that one can use the relative frequency of
subgraphs within networks to distinguish and cluster different net-
works. Using the relative frequencies of undirected subgraphs up
to four vertices and other topological properties such as in-degree,
out-degree, and PageRank as representative features for a network,
they show up to 75% clustering accuracy for networks chosen from
seven distinct categories. Using directed edges and 284 features in
total, they achieved just over 90% clustering accuracy.

The GraphBLAS project was inspired by the Basic Linear Algebra
Subprograms (BLAS) with the goal of building graph algorithms
upon a small set of kernels. GrpahBLAS libraries includes [18]

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SC’19, November 17-22, 2019, Denver, Colorado Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

[41][26] [45][43].GraphBLAS operations have been successfully em-
ployed to implement a suite of traditional graph algorithms includ-
ing Breadth-first traversal (BFS) [41], Single-source shortest path
(SSSP) [41], Triangle Counting [10], and so forth. More complex
algorithms have also been developed with GraphBLAS primitives.
For example, the high-performance Markov clustering algorithm
(HipMCL) [11] that is used to cluster large-scale protein-similarity
networks is centered around a distributed-memory SpGEMM algo-
rithm.

4 ALGORITHMIC DESIGN OF

SUBGRAPH2VEC

The dynamic programming in Algorithm 2 requires
(|T |
|Ts |

) (|Ts |
|Ts,a |

)
times of vertex neighbor traversal for each Vi from line 7 to 9.
However, we find the redundancy in this traversal, which is shown
in Figure 3, where it counts a two-vertex sub-template with a total

Figure 3: Identify the redundancy of standard color coding

in a two-vertex sub-template Ts , which is further split into

an active child and a passive child.

of three colors. The left case and the middle case have the same
color set (the same Is,p) assigned to their passive child Ts,p , which
causes redundant access to Ms,p (j, Is,p) when traversing neighbor
vertices.

Algorithm 3: Dynamic Programming in SubGraph2Vec
input :G(V ,E),Ms,p ,Ts
output :Ms : matrix storing traversal results

1 for Vi ∈ G(V ,E) do
2 for color sets Cs,p satisfying |Cs,p | = |Ts,p | do
3 forall Vj ∈ N (Vi) do
4 B(i, Is,p) ← B(i, Is,p) +Ms,p (j, Is,p)

5 for Vi ∈ G(V ,E) do
6 for color set Cs satisfying |Cs | = |Ts | do
7 for color sets Cs,a , Cs,p split from Cs do

8 Ms (i, Is) ← Ms (i, Is) +Ms,a (i, Is,a)B(i, Is,p)

On the contrary, SubGraph2Vec proposes a new way to ac-
complish the vertex neighbor traversal described from 1 to 4 of
Algorithm 3:

(1) The vertex neighbor traversal is decoupled from line 9 of
Algorithm 2.

(2) Only
(|T |
|Ts,p

)
times of traversal is applied on each vertex,

which is proven to be the minimum amount.
According to distributive property of addition and multiplication,

line 9 of Algorithm 2 can be re-written as∑
Vj ∈N (i)

Ms,a (i, Is,a)Ms,p (j, Is,p) = Ms,a (i, Is,a)
∑

Vj ∈N (i)
Ms,p (j, Is,p)

(2)
, where the first itemMs,a (i, Is,a) at right-hand only contains count
values of Vi while the second item

∑
Vj ∈N (i)Ms,p (j, Is,p) only in-

volves traversing neighbors of Vi . This decoupled design enables
a caching and re-using of the traversal results (the summation of
Ms,p (j, Is,p) shown in Figure 4), which allows us to reduce the
traversal times.

Figure 4: Decouple the vertex neighbor traversal fromupdat-

ing of the count value according to distributive property of

addition and multiplication in Equation 2.

Secondly, we prove that
(|T |
|Ts,p |

)
is the minimal required amount

of vertex neighbor traversal. Supposing that |Ts,p | ≤ |Ts | ≤ |T |,
we have

(|T |
|Ts |

) (|Ts |
|Ts,p |

)
/
(|T |
|Ts,p |

)
=

(|T |− |Ts,p |
|T |− |Ts |

)
≥ 1 Hence, we have(|T |

|Ts,p |
)
≤

(|T |
|Ts |

) (|Ts |
|Ts,p |

)
. On the other hand, all color set combina-

tions of Cs are required at line 7 of Algorithm 2, meaning that
all color set combinations of Cs,p will be covered because Cs =
Cs,a ∪ Cs,p . Therefore,

(|T |
|Ts,p |

)
is the minimal times of required

vertex neighbor traversal. In addition, the operation of updating
Ms at line 9 of Algorithm 2 can be re-written in Algorithm 3 from
line 5 to 8.

The minimization of vertex neighbor traversal also reduces the
complexity of the standard sequential algorithm of color coding.
A single time of vertex neighbor traversal by all Vi ∈ G(V ,E) has
a complexity of O(|E |), and a single time of counting template at
line 4 of Algorithm 3 is O(|V |). We assume that the sizes of sub-
templates are uniformly distributed between 1 and n, and we have
the following lemmas.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

SubGraph2Vec: Highly-Vectorized Tree-like Subgraph Counting SC’19, November 17-22, 2019, Denver, Colorado

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Lemma 4.1. For a template or a sub-templateTs , if the counting of
the sub-templates of Ts has been completed, then the time complexity

of counting Ts is:

O(|E |
(
|T |
|Ts,p |

)
+ |V |

(
|T |
|Ts |

) (
|Ts |
|Ts,p |

)
). (3)

Proof. First,Ts,p has
(|T |
|Ts,p |

)
color combinations, which requires(|T |

|Ts,p |
)
times of vertex neighbor traversal having a time complexity

of O(|E |
(|T |
|Ts,p |

)
). Secondly, Ts has a total of

(|T |
|Ts |

)
different color

combinations, and each sub-template has a total of
(|Ts |
|Ts,p |

)
splits,

thus we have a complexity of O(|V |
(|T |
|Ts |

) (|Ts |
|Ts,p |

)
) for line 8 of Algo-

rithm 3. □

Lemma 4.2. For integers l ≤ m ≤ n, and l0 ≤ 0, l1 ≤ 1, . . . , ln ≤
n, the following equations hold:

(1) maxm
(n
m
)
= O(n−1/22n)

(2) max{m,l }
(n
m
) (m

l
)
= O(n−13n)

(3) max{l0,l1, ...,ln }
∑n
m=0

(n
m
) (m
lm

)
= O(n−1/23n)

Lemma 4.3. In the worst case, the total time complexity of counting

a k-node template using SubGraph2Vec is in Equation 4.

O((ek log (1
δ
) 1
ϵ2
)(|E |2k + |V |k−1/23k)). (4)

Proof. A k-node template generates up to O(k) sub-templates.
And O(ek log (1δ)

1
ϵ 2) iterations are performed in order to get the

(ϵ,δ)-approximation. □

Whereas, the total time complexity of the standard sequential
algorithm is shown in Equation 5.

O((ek log (1
δ
) 1
ϵ2
)(|E |k−1/23k)). (5)

By comparing the time complexities of 4 and 5, we observe an
algorithmic improvement of SubGraph2Vec to the standard se-
quential algorithm in terms of the template size k = |T | and the
average degree |E |/|V | of G(V ,E). With |E |/|V | ≫ 1, we have an
improvement proportional to (3/2)kk−1/2. For large templates of
k ≫ 1, we have an improvement proportional to |E |/|V |. In general,
SubGraph2Vec has an algorithmic improvement over the stan-
dard sequential algorithm with large templates and dense input
networks, and we have experiments results in Section 7 to support
this implication. This complexity reduction is also crucial to ensure
that the algorithm is scalable in distributed system, where the tra-
versal of vertex neighbour usually curses expensive inter-machine
communication overhead.

5 COALESCED MEMORY ACCESS AND

VECTORIZATION

To parallelize the dynamic programming procedure in Algorithm 2,
a naive implementation is to parallelize the for loop over Vi ∈
G(V ,E) by using threads (the graph traversal model). However,
modern high-end processors are normally equipped with vector
register units supporting single instruction multiple data (SIMD)
programming paradigm. Modern compilers could automatically
vectorize the codes within a for loop if the loop has consecutive

Figure 5: Illustrate Line 6 to 9 ofAlgorithm2) by afive-vertex

G = (V ,E) and a three-vertex templateT . The column indices

in Ms,a and Ms,p are calculated from their color combina-

tions by Equation 1.

indices and regular memory access pattern (e.g., access memory
by stride 1). Unfortunately, we find that the graph traversal model
of Algorithm 2 does not meet the SIMD paradigm. In Figure 5,
we examine a simple case where a thread is traversing its two
neighbors and updating count values in columns of Ms . There are
two barriers:

(1) The count values from neighbors are not adjacent in the
memory layout. SeeMs,p (0, 1) andMs,p (3, 1) in Figure 5.

(2) The indices like Is are not consecutive because of using the
combinatorial number system in Equation 1. For instance, Is
equals 1, 0, 2 in up, middle, and bottom parts of Figure 5.

These two barriers still exist even in our decoupled procedures
shown in Algorithm 3. By carefully selecting and modifying data
structure and thread workflow, we propose a new scheme in Sub-
Graph2Vec to achieve highly-vectorized codes and coalesced mem-
ory access.

5.1 Vectorization in Vertex Neighbour

Traversal

SubGraph2Vec uses an adjacency matrix, notated as AG for the in-
put networkG(V ,E).AG is a sparse 0-1 matrix satisfyingAG (i, j) =
1 if and only if Vj ∈ N (Vi). There are various data formats to rep-
resent a sparse matrix, for instance, the Sparse Row Compressed
(CSR) format utilizes three dense arrays:

(1) val stores the values of nonzero entries
(2) colIdx stores the column indices of each nonzero entry.
(3) rowIdx stores the offset of the first nonzero entry in values

for each row.
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SC’19, November 17-22, 2019, Denver, Colorado Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 6: Comparing the thread execution order, where (a) Graph traversal Model has count data stored in memory with a

row-majored layout, and (b) SubGraph2Vec (Vectorized Model) has count data stored in memory with a column-majored

layout.

Therefore, we re-write line 1 to 4 of Algorithm 3 by Algorithm 4,
where for each Is,p , we schedule loops of Vi to threads while each
thread is vectorizing its own work. We observe that j has succes-

Algorithm 4: Vectorized Neighbor Traversal in Sub-
Graph2Vec
input :AG,Ts ,Ms,p
output :B

1 forall color sets Cs,p satisfying |Cs,p | = |Ts,p | do
2 forall Vi ∈ AG do // loop is scheduled to threads
3 forall j = AG.rowIdx[i] to AG.rowIndex[i + 1] do

// thread workload is vectorized

4 B(i, Is,p) ←
B(i, Is,p) + AG.val[j]Ms,p (AG.colIdx[j], Is,p)

sive values from AG .rowIdx[i] to AG .rowIdx[i + 1] resulting in
coalesced data access to three dense arrays of AG . Unfortunately,
AG .colIdx[j] does not guarantee successive values due to the spar-
sity of AG . However, advanced compilers still provide partial vec-
torization support to this indexed access pattern. We will introduce
our customization in addressing this partial vectorization issue in
Section 6.

5.2 Thread Workflow for Vectorization

In Algorithm 3, counting templates at line 8 cannot be vectorized
because the indices are not successive. One solution is to find an-
other index system to provide successive index values. Nevertheless,
there would be varying column numbers in Ms for different sub-
templateTs . The same variation occurs atMs,a andMs,p . For small
Ts , the length of vectorization could be less than 10, which causes
an under utilization of hardware resource.

To address this issue, we propose a new scheme illustrated in
Figure 6.

(1) Change memory layout from row-majored order to column-
majored order.

(2) All threads are working on same columns ofMs ,Ms,a ,Ms,p
concurrently and processing the matrices column by column.

(3) All rows of a column are evenly distributed to threads.
(4) Each thread vectorizes the work on its own portion of rows.

Compared to the graph traversal model, the length of vectorization
is converted from

(|T |
|Ts |

)
to the million-level number of vertices

in G(V ,E), which is sufficient to fully utilize the hardware and
invariant to different sub-templates. Furthermore, the stride one
regular memory access is efficient in prefetching data frommemory
to cache lines.

6 INVOCATION OF LINEAR ALGEBRA

KERNELS

Compared to the graph traversal model, SubGraph2Vec is designed
to be portable among hardware platforms while keeping high per-
formance. The vectorized vertex neighbor traversal module in Al-
gorithm 4 mathematically equals to an operation of sparse matrix
dense vector multiplication (SpMV), which is an essential sparse
linear solver on different hardware platforms. Correspondingly,
line 8 of Algorithm 3 equals an element-wised multiplication and
addition of dense vectors (eMA). A complete SubGraph2Vec made
of SpMV and eMA kernels is described in Algorithm 5, which also
applies an in-place storage of the SpMV results from the column
vector buffer B back toMs,p to reduce the memory footprint.

To achieve better kernel performance than by using public li-
braries, we customize both of SpMV and eMA kernels. For SpMV,
we combine a bundle of SpMV operations in Algorithm 5 into
a Sparse matrix dense matrix (SpMM) operation shown in Algo-
rithm 6, where the right-hand dense matrix isMs,p . To save peak
memory utilization, we also split columns of Ms,p into batches
with a pre-selected batch size. To improve the load balancing and
data locality, we utilize a split compressed sparse column (CSC-
Split) format instead of the default compressed sparse row (CSR)
format that is widely used by public libraries. CSC-Split format
converts the standard CSC format into a fixed number of partitions.
Entries of CSC matrix are distributed to a partition when their row

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

SubGraph2Vec: Highly-Vectorized Tree-like Subgraph Counting SC’19, November 17-22, 2019, Denver, Colorado

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Algorithm 5: SubGraph2Vec with Linear Algebra Kernels
input :AG ,T , ϵ,δ
output :A (ϵ,δ)-approximation to emb(T ,G)

1 N = O(e
k log(1/δ)

ϵ 2) // required iterations to converge

2 Partition T into sub-templates Ts
3 for j = 1 to N do

4 forall Vi ∈ G(V ,E) do
5 Color Vi by a value randomly drawn from 1 to k = |T |
6 for s = 0, 1, . . . , S − 1 do
7 forall color sets Cs,p satisfying |Cs,p | = |Ts,p | do
8 B← AGMs,p (:, Is,p) // SpMV kernel

9 Ms,p (:, Is,p) ← B // Sum of neighbor counts

10 forall color sets Cs satisfying |Cs | = |Ts | do
11 Ms (:, Is) ← 0
12 forall color sets Cs,a and Cs,p , created by splitting

Cs satisfying |Cs,a | = |Ts,a | and |Cs,p | = |Ts,p |
do

13 Ms (:, Is) ← Ms (:, Is) +Ms,a (:, Is,a) ⊙Ms,p (:, Is,p)
// eMA kernel

14 P ← probability that the template is colorful
15 α ← number of automorphisms of T0
16 f inalCount[j] ← 1

Pα
∑
i
∑
C M0(i, IC)

17 Output the average of all f inalCount .

IDs fit into a pre-defined range of that partition. Inside a partition,
the entries are ordered by their column IDs of CSC format, and
therefore entries sharing the same column ID and adjacent row IDs
are bundled together to improve the data locality and cache usage.
Meanwhile, we store batches of right-hand vectors from Ms,p in
a row-majored memory layout, and we set up the batch size to
the maximal concurrent element number of the hardware SIMD
unit. Finally, when a partition is assigned to a thread, the thread
processes its entries one by one while vectorizing the computation
work on a batch of row entries fromMs,p .

To customize the eMA kernel, we utilize Intel (R) AVX intrinsics,
where multiplication and addition are implemented by using the
fused multiply-add (FMA) instruction, which cuts the computation
instructions by half.

In addition, there are already substantial research work in de-
veloping high performance linear algebra kernels. The invocation
of linear algebra kernels in SubGraph2Vec benefits from: 1) using
formats and kernel implementations tailored for different input
datasets; 2) increasingly improved kernel performance on various
hardware platforms.

7 EXPERIMENTS AND RESULTS

7.1 Datasets and Templates

The datasets in our experiments are listed in Table 2, whereGraph500
Scale=20, 21, 22 are collected from [25]; Miami, Orkut, and NYC are
from [12] [29] [44]; RMAT are widely used synthetic datasets gen-
erated by the RMAT model [20], where we increase parameter K

Algorithm 6: CSCSplit SpMM for sub-template Ts in Sub-
Graph2Vec
input :AG ,Ms,p , sIdx ,BSize, SplitPars
output :Out

1 forall Par ∈ SplitPars do // partition per thread
2 forall e ∈ Par do // workload per thread
3 for j = sIdx , . . . , sIdx + BSize do
4 Out(e .rowId, j) ← Out(e .rowId, j) +

AG (e .rowId, e .colId)Ms,p (e .colId, j) // rowId,
colId are row and column indices in
CSC-Split compressed sparse format

to generate datasets with increasingly skewed degree distribution.
The templates in Figure 7 are from the tests in [37] or created by
us. The template size increases from 10 to 17 while some templates
have two different shapes.

7.2 Hardware and Software

In the experiments, we use: 1) a single node of a dual-socket Intel(R)
Xeon(R) CPU E5-2670 v3 (architecture Haswell), 2) a single node
of a dual-socket Intel(R) Xeon(R) Platinum 8160 CPU (architecture
Skylake-SP) processors, and 3) a single node of Tesla V100 SXM2
paired with an Intel(R) Xeon(R) CPU E5-2630 v4. More details of
the testbed hardware as well as the computation environment are
released in the Artifact Description file.

We use the following implementations.
• Fascia implements the graph traversalmodel of color-coding
algorithm with multi-threading on a single CPU [37], which
serves as a performance baseline.
• SubGraph2Vec implements SubGraph2Vec on CPU by
using our in-house CSC-Split format with a SpMM kernel
and eMA kernel (threaded by OpenMP). It is the default
implementation of SubGraph2Vec and supports distributed
systems.
• SubGraph2Vec-MKL implements SubGraph2Vec on a
single CPU by using CSR based SpMV kernel from Intel
MKL and eMA kernel (threaded by OpenMP). It also supports
distributed systems.
• SubGraph2Vec-cuSPARSE implements SubGraph2Vec
on GPU by using CSR based SpMV kernel from NVIDIA
cuSPARSE and eMA kernel (threaded by CUDA). It can sup-
port distributed systems by using the CSR format API from
distributed mode of SubGraph2Vec-MKL.

Binaries on CPU are compiled by the Intel(R) C++ compiler for
Intel(R) 64 target platform from Intel(R) Parallel Studio XE 2019,
with compilation flags of “-O3“, “-xCore-AVX2", “-xCore-AVX512",
and the Intel(R) OpenMP. Binaries on GPU are compiled by CUDA
release 9.1 (V9.1.85). The distributed binaries are compiled by Intel
MPI 2019. We use, by default, a thread number equal to the physical
core number of CPU, i.e., 48 threads on a Skylake node and 24
threads on a Haswell node. The threads are bind to cores with
a spread affinity. For GPU, we use a thread block with a size of
1024 for the eMA kernel. For kernel invoked by Intel MKL and
NVIDIA cuSPARSE, we use the default setup. We mainly use the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SC’19, November 17-22, 2019, Denver, Colorado Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Datasets used in the experiments (K=103, M=106)

Data Vertices Edges Avg Deg Max Deg Abbreviation Source
EcoliGO-BP 1,474 6,896 9.36 72 Ecoli Biology [1]
WI-2004 1,239 1,736 2.8 74 Worm1 Biology [2]
WI-2007 1,498 1,817 2.43 86 Worm2 Biology [2]
Combined-APMS 1,622 9,070 11.18 127 Yeast1 Biology [3]
LC-multiple 1,536 2,925 3.81 40 Yeast2 Biology [3]
Graph500 Scale=20 600K 31M 48 67K GS20 Graph500 [25]
Graph500 Scale=21 1M 63M 51 107K GS21 Graph500 [25]
Graph500 Scale=22 2M 128M 53 170K GS22 Graph500 [25]
Miami 2.1M 200M 49 10K MI Social network [12]
Orkut 3M 230M 76 33K OR Social network [29]
NYC 18M 960M 54 429 NY Social network [44]
RMAT-1M 1M 200M 201 47K RT1M Synthetic data [20]
RMAT(K=3) 4M 200M 52 26K RTK3 Synthetic data [20]
RMAT(K=5) 4M 200M 73 144K RTK5 Synthetic data [20]
RMAT(K=8) 4M 200M 127 252K RTK8 Synthetic data [20]

Table 3: Execution time (s) of SubGraph2Vec versus Fascia

with increasing template sizes from U12 to U17.

Dataset Algorithm u12 u13 u14 u15-1 u15-2 u16 u17
Miami F 163 400 944 2663 2435
Miami S 18 38 55 160 150
Orkut F 642 2006 4347 1.5e4 1.2e4
Orkut S 30 67 80 238 230
RMAT 1M F 1535 5378 1.2e4 3.4e4 3.2e4 1.1e5 3.8e5
RMAT 1M S 16 32 34 97 97 224 573
Graph500 20 F 132 452 923 3379 2679
Graph500 20 S 7 14 21 63 56
Graph500 21 F 289 1044 2036 7535 5914
Graph500 21 S 12 26 36 105 102
Graph500 22 F 764 2814 5477 1.9e4 1.6e4
Graph500 22 S 26 53 74 220 194
RMAT K=3 F 1191 4890 9711 3.0e4 3.2e4
RMAT K=3 S 39 110 170 377 262
RMAT K=5 F 2860 9906 2.0e4 9.0e4 5.4e4
RMAT K=5 S 29 60 82 233 240
RMAT K=8 F 5620 2.0e4 3.3e4 9.4e4 8.5e4
RMAT K=8 S 25 51 67 217 234
Tests run on a Skylake node. F = Fascia and S = SubGraph2Vec.

SubGraph2Vec to evaluate our work except for Section 7.8, where
SubGraph2Vec with public library kernels are evaluated against
Fascia.

7.3 Performance Evaluation

We first examine the performance improvement of SubGraph2Vec
over the state-of-the-art Fascia on a Skylake node. The best per-
formance we can obtain is by using customized matrix format and
SpMM kernel. Note that we scale the template size up to the mem-
ory limitation on our Skylake testbed for each dataset in Table 3.
The reduction of execution time is significant particularly for tem-
plate sizes larger than 14. For instance, Fascia spends four days to
process a million-vertex dataset RMAT-1M with template u17 while
SubGraph2Vec only spends 9.5 minutes. For relatively smaller

templates such as u12, SubGraph2Vec still achieves 10x to 100x of
improvement on datasets Miami, Orkut, and RMAT-1M.

In Table 3, we observe that the improvement is approximately
proportional to the average degree of datasets. For instance, Sub-
Graph2Vec achieves 10x and 20x improvements on datasets Miami
(average degree of 49) and Orkut (average degree of 76), respec-
tively. It implies that our optimization works better on dense graph
network when compared to Fascia.

The three Graph500 datasets in Table 2 have comparable average
degrees but growing vertex number and edge number. For the
same template, SubGraph2Vec obtains similar improvements over
Fascia across the three datasets implying that SubGraph2Vec has
a scalable performance improvement with respect to the dataset
size.

Finally, we compare RMAT datasets with increasingly skewed de-
gree distribution, which causes a thread-level workload imbalance.
The results show that SubGraph2Vec has comparable execution
time regardless of the degree distribution. On the contrary, Fascia
spends significantly (2x to 3x) more time on datasets with skewed
degree distribution.

7.4 Non-Vectorized versus Vectorized

To test the performance gains of vectorization, we implemented
a non-vectorized SubGraph2Vec, keeping the same computation
complexity as SubGraph2Vecand uses multi-threading while not
applying the vectorization techniques introduced in Section 56. We
tested the performance improvements shown in Figure 9 on Miami
dataset.

We see that vectorization brings a performance boost of at least
8 times. When With increasing thread number, the performance
improvement will decrease, which means SubGraph2Vectakes full
advantage of the VPU, so the gain from the increase in the number
of threads is relatively less. Despite this, the performance of fully
vectorized SubGraph2Vecis still far beyond the non-vectorized
version.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

SubGraph2Vec: Highly-Vectorized Tree-like Subgraph Counting SC’19, November 17-22, 2019, Denver, Colorado

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

7.5 Hardware Utilization

In addition to the improvement in execution time, SubGraph2Vec
also enjoys a better hardware utilization over Fascia, which is
expected because of our co-design approach that explores the hard-
ware horsepower from multiple aspects. It is worth noting that
we only evaluate the codes doing the counting workload and ex-
clude other code sections such as data loading. The evaluated codes
of Fascia is a for loop parallelized by OpenMP threads while the
evaluated codes of SubGraph2Vec are the SpMM and eMA kernels.

7.5.1 CPU and VPU Utilization. Figure 8(a) first compares the
CPU utilization defined as the average number of concurrently
running physical cores. For Miami, Fascia achieves 60% of CPU
utilization. However, the CPU utilization drops down below 50%
on Orkut and NYC. Conversely, SpMM kernel keeps a high CPU
utilization from 65% to 78% for all datasets. The eMA kernel has

Figure 7: Templates used in experiments

a growing CPU utilization from Miami (46%) to NYC (88%). We
have two explanations: 1) the SpMM kernel splits and regroups the
nonzero entries by their row IDs, which mitigates the imbalance of
nonzero entries among rows; 2) the eMA kernel has its computation
workload for each column of Ms,a ,Ms,p evenly dispatched among
threads.

Secondly, we examine the code vectorization in Figure 8. VPU in
a Skylake node is a group of 512-bit registers. The scalar instruction
also utilizes the VPU but it cannot fully exploit its 512-bit length.
Figure 8 refers to the portion of instructions vectorized with a full
vector capacity. For all of the three datasets, Fascia only has 6.7%
to 12.5% VPU utilization implying that the codes are not vectorized.
While for SpMM and eMA kernels of SubGraph2Vec, the VPU
utilization is 100%. A further metric of packed float point instruction
ratio (Packed FP) justifies the implication that Fascia has zero
vectorized instructions but SubGraph2Vec has all of its float point
operations vectorized.

Table 4: Memory and Cache Usage of Fascia, SpMM, and

eMA of SubGraph2Vec on a Skylake Node

Miami Bandwidth L1 Miss Rate L2 Miss Rate L3 Miss Rate
Fascia 6 GB/s 4.1% 1.8% 85%

SpMM 86.95 GB/s 8.3% 51.2% 36.8%

eMA 106 GB/s 0.3% 20.6% 9.9%

Orkut Bandwidth L1 Miss Rate L2 Miss Rate L3 Miss Rate
Fascia 8 GB/s 9.6% 5.3% 46%

SpMM 59.5 GB/s 6.7% 42.8% 45%

eMA 116 GB/s 0.32% 22.2% 9.0%

NYC Bandwidth L1 Miss Rate L2 Miss Rate L3 Miss Rate
Fascia 7 GB/s 2.4% 8.1% 87%

SpMM 96 GB/s 7.7% 76% 74%

eMA 122 GB/s 0.1% 99% 14.8%

7.5.2 Memory Bandwidth and Cache Usage. Because of the
sparsity, subgraph counting is memory bounded within a shared
memory system. Therefore, the utilization of memory and cache
are critical to the overall performance. In Table 4, we compare
SpMM and eMA of SubGraph2Vec to Fascia. It shows that the
eMA kernel has the highest bandwidth value around 110 GB/s for
the three datasets, which is due to the highly vectorized codes and
regular memory access pattern. The data is prefetched into cache
lines, which mitigates the cache miss rate as low as 0.1%.

The SpMM kernel also enjoys a decent bandwidth usage around
70 to 80 GB/s by average when compared to Fascia. Although
SpMM has an L3 miss rate as high as 74% in dataset NYC because
the memory footprint is larger than the L3 cache capacity. The
optimized thread level and instruction level vectorization ensures a
concurrent data loading from memory, which leverages the high
memory bandwidth. Fascia has the lowest memory bandwidth
usage because of the thread imbalance and the irregular memory
access.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

SC’19, November 17-22, 2019, Denver, Colorado Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Miami Orkut NYC

0
20
40
60
80

100

U
til

iz
at

io
n

(%
)

(a) CPU Utilization

Miami Orkut NYC

0
20
40
60
80

100

(b) VPU Utilization

Miami Orkut NYC

0
20
40
60
80

100

(c) Packed FP Ratio

FASCIA

SUBGRAPH2VEC SpMM

SUBGRAPH2VEC EMA

Figure 8: The hardware utilization on one Skylake node for template u12.

u12 u13 u14 u15-1 u15-2
0

10
20
30

Templates

S
pe

ed
up

(a) Non-Vectorized versus Vectorized

u12 u13 u14 u15-1 u15-2
101

102

103

Templates

S
pe

ed
up

(b) Overall Performance Improvement

Miami Orkut GS20 GS21 GS22

RT1M RTK3 RTK5 RTK8

Figure 9: The performance improvement brought by vector-

ization and the overall performance improvement. The Scal-

ing tests run on a Skylake node.

7.5.3 Roofline Model. The roofline model in Figure 10 reflects
the hardware efficiency. The horizontal axis is the operational in-
tensity (FLOP/byte) and the vertical axis refers to the measured
throughput performance (FLOP/second). The solid roofline is the
maximal performance the hardware can deliver under a certain
operational intensity. Because of the low operational intensity, the
performance of Fascia and SubGraph2Vec are bounded by the
memory bandwidth and we consider it as a memory-bound roofline.
For a relatively small dataset like Miami, both of Fascia and Sub-
Graph2Vec are close to the memory-bound roofline because the
data can be fit into the 33 MB L3 cache. For dataset Orkut, whose
data size is beyond the capacity of L3 cache, SubGraph2Vec is
much closer to the memory-bound roofline than that of Fascia
because of its regular and vectorized memory access pattern.

7.6 Parallelization of Single Node

We perform a strong scaling test using up to 48 threads on Sky-
lake node in Figure 11. We choose RMAT generated datasets with
increasing skewness parameters of K = 3, 5, 8. When K = 3.

1/ 32 1/ 16 1/ 8 1/ 4 1/ 2
4

16

64

SubGraph2Vec-Miami
SubGraph2Vec-Orkut

Baseline-Miami

Baseline-Orkut

Operational Intensity (FLOPS/byte)

Th
ro

ug
hp

ut
(G

FL
O

P
S

)

Memory Bound Roofline

Figure 10: Apply roofline model to Fascia and Sub-

Graph2Vec. DatasetMiami, Orkut for template u15-1. Tests

are done on a Skylake node.

1 2 4 8 12 24 48

2

4

6

8

Number of Cores

S
pe

ed
up

RMAT K=3
RMAT K=5
RMAT K=8

Figure 11: Thread scaling for RMATdatasets with increasing

skewness on a Skylake node.

As the performance is bounded by memory, which has 6 memory
channels per socket, we have a total of 12 memory channels on
a Skylake node that bounds the thread scaling. Eventually, Sub-
Graph2Vec obtain a 7.5x speedup at 48 threads. When increasing
the skewness of datasets to K = 5, 8, the thread scalability of Sub-
Graph2Vec drop down because the skewed data distribution brings
workload imbalance when looping vertex neighbors.

7.7 Parallelization of Distributed Nodes

A distributed SubGraph2Vec extends the memory capacity of a
single node to run large templates. In Table 3, dataset RT1M can
only run template with size up to u17 on a single node, however,
we can scale up the template size to u20 by using 16 nodes shown
in Figure 12.

In addition, our distributed SubGraph2Vec has a good strong
scalability, which even achieves superlinear speedup in Figure 13
from 1 node to 8 nodes. According to the analysis made in Sec-
tion 7.5.3, SubGraph2Vec is memory bounded, and increasing the

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

SubGraph2Vec: Highly-Vectorized Tree-like Subgraph Counting SC’19, November 17-22, 2019, Denver, Colorado

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

u3 u5 u7 u10 u12 u13 u14 u15-1 u17 u19 u20

100

102

Templates

E
xe

cu
tio

n
Ti

m
e

(s
)

Figure 12: Scaling up the templates up to u20 by distributed

SubGraph2Vec running on 16 Haswell nodes

1 2 4 8 16
0

5

10

15

Number of Cluster Nodes

S
pe

ed
up

Miami GS23

Orkut RTK3

Figure 13: Strong scaling test on distributed SubGraph2Vec

for four datasets and template u14.

number of nodes scales out not only computation resources but
also memory bandwidth and cache resource. Having less data on
each node can increase the percentage of data held by last level of
CPU cache.

7.8 Portability to Other Platforms

Hardware platforms such as NVIDIA GPU requires higher pro-
gramming skills to exploit their performance. However, there are
already highly-optimized public libraries of linear algebra kernels.
For SpMV operation, we have the mkl_sparse_s_mv kernel from
Intel MKL library on CPU and the cusparseScsrmv kernel from
NVIDIA cuSPARSE library on GPU. For eMA kernel, we can use a
combination of vsMul and vsAdd kernels from Intel MKL or hand-
implement such kernels whenever the kernel is absent because of
its simplicity. Hence, we have ported SubGraph2Vec to GPU by
keeping the CPU codes other than SpMV and eMA on the host side
while invoking cuSPARSE and CUDA kernels for the two linear
algebra operations.

In Figure 14, we port the performance of SubGraph2Vec to
three platforms by using CSR-SpMV libraries kernels. When the
template size is small, SubGraph2Vec-cuSPARSE has comparable
or even better performance than SubGraph2Vec-MKL. However,
the performance of SubGraph2Vec-cuSPARSE drops down when
the template size grows up. As NVIDIA-V100 only has 16GB of
device memory, it is probable that the large memory footprint
of Ms brought by large template size cannot fit into the device
memory, and the bi-directional data transfer between the host and
device memory compromises the performance of SubGraph2Vec-
cuSPARSE. Nevertheless, both of Intel MKL and NVIDIA cuSPARSE
are not open sourced, and we cannot conclude on their performance
gap. Also, the three hardware platforms have different theoretical
peak performances and memory bandwidths, this result is only

meant to demonstrate the portability of our SubGraph2Vec across
hardware platforms.

7.9 Error Discussion

We implement the standard color coding algorithm that Alon et
al. [5] prove to run at most N iterations to control approximation
quality as in Algorithm 1. In practice, the subgraph counting with
color coding requires only 100 iterations for a 7 node template
on H.pylori with an error of less than 1% in FASCIA [39]. Sub-
Graph2Vec with its pruning and vectorization optimization only
differs from the Fascia due to the restructuring of the computation
from Algorithm 2 to Algorithm 3. It should give identical results
with exact arithmetic in Equation 2.

However, when dealing with large graphs, the counted value
will exceed the range of integer variables. As a consequence, both
Fascia and our SubGraph2Vec use 32-bit floating point numbers
to avoid overflow. Hence, slightly different results are observed
between Fascia and SubGraph2Vec due to the rounding error
consequent from floating point arithmetic operations. Figure 15
reports such relative errors between SubGraph2Vec and Fascia in
the range of 10−6 across all the tests on a Graph500 GS20 dataset
with increasing template sizes, which is negligible.

8 CONCLUSION

Although a single machine with big shared memory and many
cores is becoming an attractive solution to graph analysis prob-
lems [30], the irregularity of memory access remains a roadblock
to improve the hardware utilization. For fundamental algorithms,
such as PageRank, the fixed data structure and predictable execu-
tion order are explored to improve data locality either in graph
traversal approach [27][46] or in linear algebra approach [14]. Sub-
graph counting, with random access to the vast memory region and
dynamic programming workflow, requires much more effort to ex-
ploit the cache efficiency and hardware vectorization. In this paper,
we fully vectorize a sophisticated algorithm of subgraph analysis,
and the novelty is a co-design approach with pattern identification
of linear algebra kernels that leverage hardware vectorization of
Intel CPU and NVIDIA GPU architectures.

The overall performance achieves a promising improvement over
the state-of-the-art work by orders of magnitude by average and
up to 660x (RMAT1M with u17) within a shared-memory multi-
threaded system. We will explore in our future work: 1) enabling
counting of tree subgraph with size larger than 30 and subgraphs
beyond tree; 2) extending the shared-memory implementation to a
distributed system; 3) exploring other graph and machine learning
problems by this co-design approach; 4) adding support to more
emerging hardware architectures.

REFERENCES

[1] [n. d.]. EColiNet. https://www.inetbio.org/ecolinet/downloadnetwork.php.
[2] [n. d.]. Worm Interactome database. http://interactome.dfci.harvard.edu/C_

elegans/index.php.
[3] [n. d.]. Yeast Interactome database. http://interactome.dfci.harvard.edu/S_

cerevisiae/index.php.
[4] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. 2015. Effi-

cient graphlet counting for large networks. In Data Mining (ICDM), 2015 IEEE

International Conference on. IEEE, 1–10.

11

https://www.inetbio.org/ecolinet/downloadnetwork.php
http://interactome.dfci.harvard.edu/C_elegans/index.php
http://interactome.dfci.harvard.edu/C_elegans/index.php
http://interactome.dfci.harvard.edu/S_cerevisiae/index.php
http://interactome.dfci.harvard.edu/S_cerevisiae/index.php

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

SC’19, November 17-22, 2019, Denver, Colorado Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

u3 u5 u7 u10 u12 u13 u14

103

104

E
xe

cu
tio

n
Ti

m
e

(s
)

(a) Graph500 Scale=20
u3 u5 u7 u10 u12 u13 u14

103
104
105

(b) Orkut
u3 u5 u7 u10 u12 u13 u14

100

101

102

(c) RMAT-1M

Haswell

Skylake

NVIDIA-V100

Figure 14: Execution Time of SubGraph2Vec on three platforms. On Haswell and Skylake nodes, we use CSR based SpMV

kernel from Intel MKL; On Volta GPU V100, we use CSR based SpMV kernel from NVIDIA cuSPARSE

u3 u5 u7 u10 u12 u13 u14 u15-2
0

2 · 10−6
4 · 10−6
6 · 10−6
8 · 10−6

Templates

R
el

at
iv

e
E

rr
or · 10−610

Figure 15: Relative error on dataset Graph500 Scale=20. Tests

are done on a Skylake node.

[5] Noga Alon, PhuongDao, ImanHajirasouliha, FereydounHormozdiari, and S Cenk
Sahinalp. 2008. Biomolecular network motif counting and discovery by color
coding. Bioinformatics 24, 13 (2008), i241–i249.

[6] Noga Alon, PhuongDao, ImanHajirasouliha, FereydounHormozdiari, and S Cenk
Sahinalp. 2008. Biomolecular network motif counting and discovery by color
coding. Bioinformatics 24, 13 (2008), i241–i249.

[7] Noga Alon and Shai Gutner. 2007. Balanced families of perfect hash functions
and their applications. In International Colloquium on Automata, Languages, and

Programming. Springer, 435–446.
[8] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. Journal of the

ACM (JACM) 42, 4 (1995), 844–856.
[9] Vikraman Arvind and Venkatesh Raman. 2002. Approximation algorithms for

some parameterized counting problems. In International Symposium on Algo-

rithms and Computation. Springer, 453–464.
[10] A. Azad, A. BuluÃğ, and J. Gilbert. 2015. Parallel Triangle Counting and Enumer-

ation Using Matrix Algebra. In 2015 IEEE International Parallel and Distributed

Processing Symposium Workshop (2015-05). 804–811. https://doi.org/10.1109/
IPDPSW.2015.75

[11] Ariful Azad, Georgios A Pavlopoulos, Christos A Ouzounis, Nikos C Kyrpides,
and Aydin Buluç. 2018. HipMCL: a high-performance parallel implementation of
the Markov clustering algorithm for large-scale networks. Nucleic acids research
46, 6 (2018), e33–e33.

[12] Christopher L Barrett, Richard J Beckman, Maleq Khan, VS Anil Kumar, Mad-
hav V Marathe, Paula E Stretz, Tridib Dutta, and Bryan Lewis. 2009. Generation
and analysis of large synthetic social contact networks. In Winter Simulation

Conference. Winter Simulation Conference, 1003–1014.
[13] Federico Battiston, Vincenzo Nicosia, Mario Chavez, and Vito Latora. 2017. Mul-

tilayer motif analysis of brain networks. Chaos: An Interdisciplinary Journal of

Nonlinear Science 27, 4 (2017), 047404.
[14] Scott Beamer, Krste Asanović, and David Patterson. 2017. Reducing PageRank

communication via propagation blocking. In Parallel and Distributed Processing

Symposium (IPDPS), 2017 IEEE International. IEEE, 820–831.
[15] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient

subgraph matching by postponing cartesian products. In Proceedings of the 2016

International Conference on Management of Data. ACM, 1199–1214.
[16] Ilaria Bordino, Debora Donato, Aristides Gionis, and Stefano Leonardi. 2008.

Mining large networks with subgraph counting. In 2008 Eighth IEEE International

Conference on Data Mining. IEEE, 737–742.
[17] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro

Panconesi. 2017. Counting graphlets: Space vs time. In Proceedings of the Tenth

ACM International Conference on Web Search and Data Mining. ACM, 557–566.
[18] Aydın Buluç and John R Gilbert. 2011. The Combinatorial BLAS: Design, im-

plementation, and applications. The International Journal of High Performance

Computing Applications 25, 4 (2011), 496–509.
[19] Venkatesan T Chakaravarthy, Michael Kapralov, Prakash Murali, Fabrizio Petrini,

Xinyu Que, Yogish Sabharwal, and Baruch Schieber. 2016. Subgraph counting:
Color coding beyond trees. In Parallel and Distributed Processing Symposium, 2016

IEEE International. Ieee, 2–11.

[20] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International

Conference on Data Mining. SIAM, 442–446.
[21] Langshi Chen, Bo Peng, Sabra Ossen, Anil Vullikanti, Madhav Marathe, Lei

Jiang, and Judy Qiu. 2018. High-Performance Massive Subgraph Counting Using
Pipelined Adaptive-Group Communication. Big Data and HPC: Ecosystem and

Convergence 33 (2018), 173.
[22] Xiaowei Chen and John Lui. 2018. Mining graphlet counts in online social

networks. ACM Transactions on Knowledge Discovery from Data (TKDD) 12, 4
(2018), 41.

[23] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing. ACM,
151–158.

[24] Saliya Ekanayake, Jose Cadena, Udayanga Wickramasinghe, and Anil Vullikanti.
2018. MIDAS: Multilinear Detection at Scale. In 2018 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). IEEE, 2–11.
[25] GraphChallenge. 2019. Graph Challenge MIT. https://graphchallenge.mit.edu/

data-sets
[26] Dylan Hutchison, Jeremy Kepner, Vijay Gadepally, and Bill Howe. 2016. From

NoSQL Accumulo to NewSQL Graphulo: Design and utility of graph algorithms
inside a BigTable database. In High Performance Extreme Computing Conference

(HPEC), 2016 IEEE. IEEE, 1–9.
[27] Kartik Lakhotia, Rajgopal Kannan, and Viktor Prasanna. 2017. Accelerating

PageRank using Partition-Centric Processing. (2017).
[28] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. 2012. An

in-depth comparison of subgraph isomorphism algorithms in graph databases.
In Proceedings of the VLDB Endowment, Vol. 6. VLDB Endowment, 133–144.

[29] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[30] Yonathan Perez, Rok Sosič, Arijit Banerjee, Rohan Puttagunta, Martin Raison,
Pararth Shah, and Jure Leskovec. 2015. Ringo: Interactive graph analytics on
big-memory machines. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data. ACM, 1105–1110.
[31] Nataša Pržulj. 2007. Biological network comparison using graphlet degree distri-

bution. Bioinformatics 23, 2 (2007), e177–e183.
[32] Nataša Pržulj, Derek G Corneil, and Igor Jurisica. 2004. Modeling interactome:

scale-free or geometric? Bioinformatics 20, 18 (2004), 3508–3515.
[33] Mahmudur Rahman, Mansurul Alam Bhuiyan, and Mohammad Al Hasan. 2014.

Graft: An efficient graphlet counting method for large graph analysis. IEEE

Transactions on Knowledge and Data Engineering 26, 10 (2014), 2466–2478.
[34] Tahsin Reza, Christine Klymko, Matei Ripeanu, Geoffrey Sanders, and Roger

Pearce. 2017. Towards practical and robust labeled pattern matching in trillion-
edge graphs. In 2017 IEEE International Conference on Cluster Computing (CLUS-

TER). IEEE, 1–12.
[35] Tahsin Reza, Matei Ripeanu, Nicolas Tripoul, Geoffrey Sanders, and Roger Pearce.

2018. PruneJuice: pruning trillion-edge graphs to a precise pattern-matching
solution. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis. IEEE Press, 21.
[36] Abu Bakar Siddique, Saadia Farid, and Muhammad Tahir. 2016. Proof of bijection

for combinatorial number system. arXiv preprint arXiv:1601.05794 (2016).
[37] George M Slota and Kamesh Madduri. 2013. Fast approximate subgraph counting

and enumeration. In Parallel Processing (ICPP), 2013 42nd International Conference

on. IEEE, 210–219.
[38] George M Slota and Kamesh Madduri. 2014. Complex network analysis us-

ing parallel approximate motif counting. In Parallel and Distributed Processing

Symposium, 2014 IEEE 28th International. IEEE, 405–414.
[39] George M. Slota and Kamesh Madduri. 2015. Parallel color-coding. Parallel

Comput. 47 (2015), 51–69. https://doi.org/10.1016/j.parco.2015.02.004 bibtex:
slota_parallel_2015.

[40] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012.
Efficient subgraph matching on billion node graphs. Proceedings of the VLDB
Endowment 5, 9 (2012), 788–799.

12

https://doi.org/10.1109/IPDPSW.2015.75
https://doi.org/10.1109/IPDPSW.2015.75
https://graphchallenge.mit.edu/data-sets
https://graphchallenge.mit.edu/data-sets
http://snap.stanford.edu/data
https://doi.org/10.1016/j.parco.2015.02.004

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

SubGraph2Vec: Highly-Vectorized Tree-like Subgraph Counting SC’19, November 17-22, 2019, Denver, Colorado

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

[41] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R.
Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. 2015. GraphMat: High Performance Graph Analytics Made
Productive. Proceedings of the VLDB Endowment 8, 11 (2015), 1214–1225. https:
//doi.org/10.14778/2809974.2809983

[42] Johan Ugander, Lars Backstrom, and Jon Kleinberg. 2013. Subgraph frequencies:
Mapping the empirical and extremal geography of large graph collections. In
Proceedings of the 22nd international conference on World Wide Web. ACM, 1307–
1318.

[43] Carl Yang, Aydin Buluc, and John D. Owens. 2018. Design Principles for Sparse
Matrix Multiplication on the GPU. (2018).

[44] Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network com-
munities based on ground-truth. Knowledge & Information Systems 42, 1 (2012),
181–213.

[45] P. Zhang, M. Zalewski, A. Lumsdaine, S. Misurda, and S. McMillan. 2016. GBTL-
CUDA: Graph Algorithms and Primitives for GPUs. In 2016 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2016-05).
912–920. https://doi.org/10.1109/IPDPSW.2016.185

[46] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and
Matei Zaharia. 2017. Making caches work for graph analytics. In Big Data (Big

Data), 2017 IEEE International Conference on. IEEE, 293–302.
[47] Zhao Zhao, Langshi Chen, Mihai Avram, Meng Li, Guanying Wang, Ali Butt,

Maleq Khan, Madhav Marathe, Judy Qiu, and Anil Vullikanti. 2018. Finding and
counting tree-like subgraphs using MapReduce. IEEE Transactions on Multi-Scale

Computing Systems 4, 3 (2018), 217–230.
[48] Zhao Zhao, Maleq Khan, VS Anil Kumar, and Madhav V Marathe. 2010. Subgraph

enumeration in large social contact networks using parallel color coding and
streaming. In Parallel Processing (ICPP), 2010 39th International Conference on.
IEEE, 594–603.

[49] Zhao Zhao, Guanying Wang, Ali R. Butt, Maleq Khan, V. S. Anil Kumar, and
Madhav V. Marathe. 2012. SAHAD: Subgraph Analysis in Massive Networks
Using Hadoop. In IEEE International Parallel & Distributed Processing Symposium.

13

https://doi.org/10.14778/2809974.2809983
https://doi.org/10.14778/2809974.2809983
https://doi.org/10.1109/IPDPSW.2016.185

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Motivation
	2.2 Statement of Problem
	2.3 Sequential Algorithm

	3 Related Work
	4 Algorithmic Design of SubGraph2Vec
	5 Coalesced Memory Access and Vectorization
	5.1 Vectorization in Vertex Neighbour Traversal
	5.2 Thread Workflow for Vectorization

	6 Invocation of Linear Algebra Kernels
	7 Experiments and Results
	7.1 Datasets and Templates
	7.2 Hardware and Software
	7.3 Performance Evaluation
	7.4 Non-Vectorized versus Vectorized
	7.5 Hardware Utilization
	7.6 Parallelization of Single Node
	7.7 Parallelization of Distributed Nodes
	7.8 Portability to Other Platforms
	7.9 Error Discussion

	8 Conclusion
	References

